News and discussions on Brain Computer Interfaces

Latest Publications

Research papers on brain computer interfaces published today:

  • by Salem Mansour
    CONCLUSION: This study serves as a proof of concept, showcasing the feasibility and acceptability of the proposed Tele BCI-FES system for rehabilitating the upper extremities of stroke survivors. While some participants demonstrated significant improvements in FMA-UE scores, these findings are not generalizable, as they were derived from a small-scale feasibility study. The results should be interpreted cautiously within the study's specific context. Additionally, the intervention was not…
  • by Junhong Luo
    The importance of optimizing channel selection for portable brain-computer interface (BCI) technology is increasingly recognized. Effective channel selection reduces computational load and enhances user experience by making BCI systems more comfortable and easier to use. A significant challenge lies in reducing the number of electrodes without compromising decoding accuracy. Although some methods have been proposed in previous studies, these often increase computational load and overlook the…
  • by Tan Zhang
    CONCLUSION: Although pain-induced brain activation was minimal in patients with DoC, enhanced functional connectivity during pain stimulation suggests that the brain continues to process pain information through coordinated activity between regions. The findings highlight the importance of assessing functional connectivity as a potential method for evaluating pain processing in patients with DoC.
  • by Yulan Xu
    CONCLUSION: Our findings suggested that repetitive BCI training could improve attention and induce lasting neuroplastic changes in FPNs. It might be a promising rehabilitative strategy for clinical populations with attention deficits. The right PPC may also be an effective target for neuromodulation in diseases with attention deficits.
  • by Shuaifei Huang
    Supernumerary robotic finger (SRF) has shown unique advantages in the field of motor augmentation and rehabilitation, while the development of brain computer interface (BCI) technology has provided the possibility for direct control of SRF. However, the neuroplasticity effects of BCI-actuated SRF (BCI-SRF) training based on the "six finger" motor imagery paradigm are still unclear. This study recruited 20 healthy right-handed participants and randomly assigned them to either a BCI-SRF training…
  • by Sining Li
    Brain-computer interfaces (BCI) acquire electroencephalogram (EEG) signals to effectively address postoperative motor dysfunction in stroke patients by discerning their motor intentions during significant movements. Traditionally, noninvasive BCIs have been constrained by limitations in their usage environments; whereas, invasive BCIs damage neural permanently. Therefore, we proposed a novel interventional BCI, in which electrodes are implanted along the veins into the brain to acquire…
  • by Meysam Hashemi
    Current clinical methods often overlook individual variability by relying on population-wide trials, while mechanismbased trials remain underutilized in neuroscience due to the brain's complexity. This situation may change through the use of a Virtual Brain Twin (VBT), which is a personalized digital replica of an individual's brain, integrating structural and functional brain data into advanced computational models and inference algorithms. By bridging the gap between molecular mechanisms,…
  • by Shuning Xue
    We share a multi-subject and multi-session (MSS) dataset with 122-channel electroencephalographic (EEG) signals collected from 32 human participants. The data was obtained during serial visual presentation experiments in two paradigms. Dataset of first paradigm consists of around 800,000 trials presenting stimulus sequences at 5 Hz. Dataset of second paradigm comprises around 40,000 trials displaying each image for 1 second. Each participant completed between 1 to 5 sessions on different days,…
  • by Tianyu He
    Speech BCIs based on implanted electrodes hold significant promise for enhancing spoken communication through high temporal resolution and invasive neural sensing. Despite the potential, acquiring such data is challenging due to its invasive nature, and publicly available datasets, particularly for tonal languages, are limited. In this study, we introduce VocalMind, a stereotactic electroencephalography (sEEG) dataset focused on Mandarin Chinese, a tonal language. This dataset includes…
  • by Beining Cao
    Steady-State Visual Evoked Potentials (SSVEP) have proven to be practical in Brain-Computer Interfaces (BCI), particularly when integrated with augmented reality (AR) for real-world application. However, unlike conventional computer screen-based SSVEP (CS-SSVEP), which benefits from stable experimental environments, AR-based SSVEP (AR-SSVEP) systems are susceptible to the interference of real-world environment and device instability. Particularly, the performance of AR-SSVEP significantly…
  • by José Jesús Hernández-Gloria
    Brain Computer Interface spellers offer a promising alternative for individuals with Amyotrophic Lateral Sclerosis (ALS) by facilitating communication without relying on muscle activity. This study assessed the feasibility of using movement related cortical potentials (MRCPs) as a control signal for a Brain-Computer Interface speller in an offline setting. Unlike motor imagery-based BCIs, this study focused on executed movements. Fifteen healthy subjects performed three spelling tasks that…
  • by Wenqiang Yan
    INTRODUCTION: Electroencephalogram (EEG) analysis has shown significant research value for brain disease diagnosis, neuromodulation and brain-computer interface (BCI) application. The analysis and processing of EEG signals is complex since EEG are nonstationary, nonlinear, and often contaminated by intense background noise. Principal component analysis (PCA) and independent component analysis (ICA), as the commonly used methods for multi-dimensional signal feature component extraction, still…
  • by Jean-Paul Noel
    Self-initiated behavior is accompanied by the experience of intending our actions. Here, we leverage the unique opportunity to examine the full intentional chain-from intention to action to environmental effects-in a tetraplegic person outfitted with a primary motor cortex (M1) brain-machine interface (BMI) generating real hand movements via neuromuscular electrical stimulation (NMES). This combined BMI-NMES approach allowed us to selectively manipulate each element of the intentional chain…
  • by Jamila Akhter
    The functional near-infrared spectroscopy-based brain-computer interface (fNIRS-BCI) systems recognize patterns in brain signals and generate control commands, thereby enabling individuals with motor disabilities to regain autonomy. In this study hand gripping data is acquired using fNIRS neuroimaging system, preprocessing is performed using nirsLAB and features extraction is performed using deep learning (DL) Algorithms. For feature extraction and classification stack and fft methods are…
  • by Fuli Jin
    Understanding value learning in animals is a key focus in cognitive neuroscience. Current models used in research are often simple, and while more complex models have been proposed, it remains unclear which assumptions align with actual value learning strategies of animals. This study investigated the computational mechanisms behind value learning in pigeons using a free-choice task. Three models were constructed based on different assumptions about the role of the basal ganglia's dual pathways…
  • by Deyu Zhao
    Objective.With the recent development of visual evoked potential (VEP) based brain-computer interfaces (BCIs), the stimulus paradigm has been continuously innovated, in which the pursuit of higher BCI performance and better user experience has become indispensable.Approach.To optimize the stimulus paradigm, a 12-target online BCI system was designed in this study by adopting flicker for steady-state VEPs, Newton's ring for steady-state motion VEP, and frame rate based video stimulus,…
  • by Bin Wei
    The rapid advancements in neuroscience highlight the pressing need to safeguard neural personal information (NPI). China has achieved significant progress in brain-computer interface technology and its clinical applications. Considering the intrinsic vulnerability of NPI and the paucity of legal scrutiny concerning NPI breaches, a thorough assessment of the adequacy of China's personal information protection legislation is essential. This analysis contends that NPI should be classified as…
  • by Axel Faes
    Objective.A novel method is introduced to regress over the sign language finger movements from human electrocorticography (ECoG) recordings.Approach.The proposed graph-optimized block-term tensor regression (Go-BTTR) method consists of two components: a deflation-based regression model that sequentially Tucker-decomposes multiway ECoG data into a series of blocks, and a causal graph process (CGP) that accounts for the complex relationship between finger movements when expressing sign language…
  • by Xinjia Li
    Exosomes secreted by cells hold substantial potential for disease diagnosis and treatment. However, the rapid isolation of high-purity exosomes and their subpopulations from biofluids (e.g., undiluted whole blood) remains challenging. This study presents oscillating microbubble array-based metamaterials (OMAMs) for enabling the rapid isolation of high-purity exosomes and their subpopulations from biofluids without labeling or preprocessing. Particularly, leveraging acoustically excited…
  • by Ya-Nan Ma
    Stroke remains a leading cause of mortality and long-term disability worldwide, frequently resulting in impairments in motor control, cognition, and emotional regulation. Conventional rehabilitation approaches, while partially effective, often lack individualization and yield suboptimal outcomes. In recent years, brain-computer interface (BCI) technology has emerged as a promising neurorehabilitation tool by decoding neural signals and providing real-time feedback to enhance neuroplasticity….